The Fast Fourier and Hilbert-Huang Transforms: A Comparison
نویسندگان
چکیده
منابع مشابه
Nonlinear phase interaction between nonstationary signals: a comparison study of methods based on Hilbert-Huang and Fourier transforms.
Phase interactions among signals of physical and physiological systems can provide useful information about the underlying control mechanisms of the systems. Physical and biological recordings are often noisy and exhibit nonstationarities that can affect the estimation of phase interactions. We systematically studied effects of nonstationarities on two phase analyses including (i) the widely us...
متن کاملFast Fourier Transforms
29 O(b log(b)) operations (using standard multiplication). As there are O(b= log(b)) primes in total, the running time of this stage of the algorithm is O(b 2 L), even using the \grammar school" method of integer multiplication. At this stage of the algorithm we have obtained a vector of length L whose entries are integral linear combinations of powers of with coeecients bounded by M in absolut...
متن کاملDimensionless Fast Fourier Transforms
This paper shows that there are fast Fourier transform (FFT) algorithms that work, for a fixed number of points, independent of the dimension. Changing the dimension is achieved by relabeling the input and the output and changing the “twiddle factors.” An important consequence of this result, is that a program designed to compute the 1-dimensional Fourier transform can be easily modified to com...
متن کاملFourier, Wavelet, and Hilbert-Huang Transforms for Studying Electrical Users in the Time and Frequency Domain "2279
The analysis of electrical signals is a pressing requirement for the optimal design of power distribution. In this context, this paper illustrates how to use a variety of numerical tools, such as the Fourier, wavelet, and Hilbert-Huang transforms, to obtain information relating to the active and reactive power absorbed by different types of users. In particular, the Fourier spectrum gives the m...
متن کاملFourier Transforms and the Fast Fourier Transform ( FFT ) Algorithm
and the inverse Fourier transform is f (x) = 1 2π ∫ ∞ −∞ F(ω)e dω Recall that i = √−1 and eiθ = cos θ+ i sin θ. Think of it as a transformation into a different set of basis functions. The Fourier transform uses complex exponentials (sinusoids) of various frequencies as its basis functions. (Other transforms, such as Z, Laplace, Cosine, Wavelet, and Hartley, use different basis functions). A Fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computers Communications & Control
سال: 2006
ISSN: 1841-9836,1841-9836
DOI: 10.15837/ijccc.2006.4.2305